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Our study is aimed at constructing and validating a UPR-associated gene signature to predict HNSCC prognosis. We obtained 544
samples of RNA sequencing data and clinical characteristics from TCGA database and randomly grouped the samples into
training and testing cohorts (1 : 1 ratio). After identifying 14 UPR-associated genes with LASSO and univariate Cox regression
analysis, HNSCC samples were categorized into low-risk (LR) and high-risk (HR) subgroups depending on the risk score. Our
analyses indicated that low-risk patients had a much better prognosis in the training and testing cohorts. To predict the
HNSCC prognosis with the 14 UPR-associated gene signatures, we incorporated the UPR gene risk score, N stage, M stage,
and age into a nomogram model. We further explored the sensitivity to anticancer drugs by using the IC50 analysis in two
subgroups from the Cancer Genome Project database. The outcomes showed that the AKT inhibitor III and sorafenib were
sensitive anticancer drugs in HR and LR patients, respectively. The immune cell infiltration analysis and GSEA provided
strong evidence for elucidating the molecular mechanisms of UPR-associated genes affecting HNSCC. In conclusion, the UPR-
associated gene risk score, N stage, M stage, and age can serve as a robust model for predicting prognosis and can improve
decision-making at the individual patient level.

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sev-
enth most common malignant neoplasm globally. There were
an estimated 931.7 thousand new cases of HNSCC worldwide
in 2020, andmore than 467,100 individuals died of this disease
[1–3]. Smoking, alcohol abuse, and areca nut chewing are risk
factors for HNSCC. Recent studies have shown that viruses
may be extremely associated with an increased risk of HNSCC
development, together with persistent infections by EBV and
HPV [4–7]. HNSCC is characterized by a high degree of
malignancy, high metastasis rate, and poor clinical prognosis
[8]. The 5-year survival rate of HNSCC is less than 50% [4,
6, 9]. The prognosis of HNSCC is connected directly to the
tumor stage, cervical lymph node, and distant metastasis.
The TNM staging system of the AJCC is widely used to evalu-
ate the prognosis of HNSCC clinically. However, there is a

common phenomenon in clinical practice: patients with simi-
lar clinical stages show different prognostic outcomes to some
extent, which suggests that TNM staging is not an accurate
predictor of survival. Therefore, it is urgent to find an effective
and reliable biomarker to help doctors assess the prognosis of
patients accurately and formulate a personalized diagnosis and
treatment plans.

Activation of the unfolded protein response (UPR) plays
an essential role in tumor transformation. The UPR is
chronically activated in general tumor cells, and it is believed
that this state is a mechanism that leads to antiapoptosis and
drug resistance of tumor cells [10–14]. When cancer cells
suffer from internal and external challenges such as onco-
gene activation and hypoxia, misfolded proteins accumulate
in the endoplasmic reticulum (ER) lumen [15]. To maintain
the ER in a stable environment under this condition, cells
initiate signaling cascades that reduce protein synthesis,
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upregulate the expression of chaperones and folding
enzymes, and induce accelerated degradation of misfolded
proteins. Adaptive changes in cells make up the UPR [16].

Cells may adapt to adversity and survive by initiating
autophagy via the UPR. However, the UPR transforms from
a cellular protective response to a cytotoxic response that
promotes apoptosis when ER stress is not alleviated [10].
Cancer cells hijack the UPR by activating UPR sensors, such
as ATF6, IRE1a, and PERK, and their main regulatory fac-
tors, such as GRP78, allow drug resistance. Therefore, inhi-
biting the UPR pathway makes cancer cells more sensitive
to conventional/targeted drug therapy [16, 17]. A recent
study [18] found that tumor cells escaped the immune
response by modulating immune cell activity in the tumor
microenvironment via the UPR. Consequently, the UPR
may provide a new way to judge the prognosis of patients
with HNSCC. However, few investigations have explored
whether the UPR is associated with survival outcomes in
HNSCC.

Our study screened UPR-associated genes that were
strongly connected with the prognosis of HNSCC. Fourteen
UPR-associated genes were verified as prognostic biomark-
ers by survival analysis. The half-maximal inhibitory con-
centration (IC50) analysis, immune infiltration analysis,
and a prognostic nomogram were carried out to help
improve the understanding of survival prediction for
HNSCC patients. Our study elucidated the molecular mech-
anism of UPR-associated genes affecting HNSCC, and UPR-
associated gene may provide prognostic guidance for clinical
diagnosis and treatment.

2. Materials and Methods

2.1. Data Acquisition of HNSCC Datasets. We downloaded
and extracted the clinical and raw RNA-seq info of 500
HNSCC patient samples and 44 paracancerous samples
from TCGA database. HNSCC patients were randomized
to training and testing cohorts (1 : 1 ratio). The microarray
expression and clinical data of a tongue cancer patient
cohort (GSE41613) were used for external verification of sig-
natures, which were obtained from the GEO database.

2.2. ssGSEA. The HNSCC RNA-seq expression data were
analyzed by using the ssGSEA method with the GSVA [19]
package according to the hallmark gene set. The univariate
Cox regression was carried out according to ssGSEA values
and HNSCC clinical information. The hallmark items were
ultimately filtered for subsequent analysis according to the
Cox results. Considering the criteria of p < 0:05 and maxi-
mum HR value, we selected UPR for subsequent analysis.

We performed WGCNA [20] with the WGCNA R pack-
age based on the HNSCC RNA-seq data of each gene and
screened target genes. The correlation between the screened
hallmark ssGSEA value and each coexpression module was
calculated. The modular genes with the best correlation
(the largest absolute value of the correlation coefficient) were
selected for subsequent analysis.

The genes in the selected coexpression module had the
best correlations with the ssGSEA value of the specified item.

According to the clinical data, the survival [21] package was
applied for the univariate Cox regression analysis on each
gene, and genes with p < 0:01 were selected for LASSO
model construction.

2.3. Construction and Validation of the UPR-Associated Gene
Prognostic Signature. The glmnet [22] package was used to
perform the LASSO regression analysis on the basis of the
gene expression and clinical data acquired from the training
group corresponding to the above screening results. After
calculating the regression coefficients corresponding to each
gene, the marker gene with regression coefficients not equal
to 0 was determined. Survival and receiver operating charac-
teristic (ROC) analyses were performed to verify the impact
of the risk score on the prognosis of HNSCC patients and
generate ROC curves based on the risk score and clinical
information. According to the LASSO model and the expres-
sion level of each gene, the predict.cv.glmnet function was
used to compute the risk score of each sample in the two
groups.

Samples in the training and testing groups were divided
into HR and LR groups according to the median risk score
for survival analysis. ROC curve analysis was carried out to
verify the LASSO regression model results. Combining the
training and testing group data, we verified the LASSO
regression model results and performed ROC analysis again.
The GSE41613 dataset was used for external validation. The
Cox regression model obtained from the training group was
used to predict the risk of each sample in GSE41613, in
which unrecorded genes were replaced by 0 values.

We grouped TCGA cohort by T stage, N stage, M stage,
sex, age, histological grade, and pathological group. The Wil-
cox.test function in the R package was used to test the risk
score in the above groups, and the correlation between some
clinical data and the risk score was calculated.

2.4. Analysis of Sensitivity to Anticancer Drugs. According to
the CGP database and the expression levels of UPR-
associated genes in each HNSCC sample, the pRRophetic
R package [23] was used for the IC50 test. After dividing
the samples into HR and LR groups of UPR-associated gene
expression by the median risk score, we calculated the IC50
score between the two groups with the limma [24] R
package.

2.5. Analysis of Immune Infiltration. The CIBERSORT [25]
software was used to score the immune infiltration of each
sample according to the expression values of genes. The cor-
relations between the scores of all 22 immune cells were esti-
mated. The Wilcoxon test was applied to test the differences
in immune scores between the HR and LR groups.

2.6. Construction and Verification of the Nomogram Model.
We developed a nomogram using the rms package and
combined the risk score with various clinical factors
obtained in the LASSO analysis to perform a nomogram
analysis. Afterward, the nomogram risk score of each sample
was calculated. The survival, ROC, and Cox analyses were
finally verified.
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3. Results and Discussion

3.1. Construction of the UPR-Associated Gene-Bas Prognostic
Signature. The workflow of our investigation is demon-
strated in Figure 1. First, we enrolled a total of 544 samples
with RNA-seq data and clinical information, including 44
paracancerous samples from TCGA database. After ssGSEA
with the GSVA package according to the hallmark gene set,
the HNSCC cohort samples were subjected to the univariate
Cox regression analysis to explore pathways associated with
prognosis. A total of 499 cancerous samples with survival
information were used in this procedure. Considering the
criteria of p < 0:05 and maximum HR value, we selected
UPR-associated genes for subsequent analysis (Figures 2(a)
and 2(b) and Table 1). According to the median ssGSEA
scores in the UPR gene set, the HNSCC cohort samples were
divided into HR and LR groups, and survival analysis was
performed. The overall survival (OS) and disease-free sur-
vival (DFS) of HNSCC were significantly different between
the two groups (Figures 2(c) and 2(d)). ROC curves from 1
year to 10.5 years (Figures 2(e) and 2(f)) revealed that the
areas under the curve (AUCs) were all greater than 0.5,

and the best cutoff value was 0.607 (5 years). The results
indicate that the UPR-associated gene signature may predict
long-term survival in patients with HNSCC.

A coexpression analysis was applied using the WGCNA
package, and the correlations between the ssGSEA score of
the hallmark UPR-associated gene and each coexpression
module were calculated. Genes in the module with the best
correlations were selected for subsequent analysis. According
to clinical data, the survival package was used for the Cox
regression analysis of the selected genes, and candidate genes
(p < 0:01) were used in the LASSO model construction.

At a 1 : 1 ratio, 499 samples were randomly divided into
test and training groups. Based on the expression of these can-
didate genes in the training group and clinical data in TCGA
database, the LASSO regression analysis was conducted.
Genes with regression coefficients that were not equal to 0 in
the LASSO regression analysis (lambda = 0:0489, min =
0:0276) were selected as marker genes (Figures 3(a) and
3(b)), and we obtained 14 marker genes (Figure 3(c)). A risk
score was calculated for each sample using the predict.cv.glm-
net function based on the Cox regression model and the
expression levels of each gene (Figure 3(d)).
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(n=499)
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Figure 1: Flow diagram for developing and validating a UPR-associated gene prognostic model.
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Figure 2: Continued.
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Figure 2: Continued.

5BioMed Research International



++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++

+++++++++++
+
+

++ ++ ++

+

++++++
++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++

+

+

+

p = 2.47e−04

HR = 1.648

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80 100 120 140 160 180 200

Time (months)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

+ Low ssGSEA (n = 250)

+ High ssGSEA (n = 249)

OS

250 152 70 35 19 10 8 5 3 2 1

249 112 48 17 8 6 3 3 1 0 0High ssGSEA (n = 249)

Low ssGSEA (n = 250)

0 20 40 60 80 100 120 140 160 180 200

Time (months)

Number at risk

(c)

Figure 2: Continued.

6 BioMed Research International



+++++++
+

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++

+++++++ ++ ++ + +

+++++
+++++++++
+

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++ ++ +

+ +
p = 1.84e−02

HR = 1.493

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80 100 120 140 160 180 200

Time (months)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

+ Low ssGSEA (n = 192)

+ High ssGSEA (n = 192)

DFS

192 117 48 25 11 6 4 2 1 1 0

192 87 38 10 4 3 1 1 1 0 0High ssGSEA (n = 192)

Low ssGSEA (n = 192)

0 20 40 60 80 100 120 140 160 180 200

Time (months)

Number at risk

(d)

Figure 2: Continued.

7BioMed Research International



AUC = 0.602

AUC = 0.593

AUC = 0.595

AUC = 0.558

AUC = 0.568

AUC = 0.577

AUC = 0.57

AUC = 0.571

AUC = 0.578

AUC = 0.593

AUC = 0.563

AUC = 0.571

AUC = 0.575

AUC = 0.607

AUC = 0.563

AUC = 0.578

AUC = 0.574

AUC = 0.571

AUC = 0.577

AUC = 0.578

8.5−years 9−years 9.5−years 10−years 10.5−years

6−years 6.5−years 7−years 7.5−years 8−years

3.5−years 4−years 4.5−years 5−years 5.5−years

1−years 1.5−years 2−years 2.5−years 3−years

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

FP

TP

(e)

Figure 2: Continued.

8 BioMed Research International



3.2. Evaluation of the UPR-Associated Gene Prognostic
Signature in the Internal and External Validation Cohorts.
Based on the median risk score, we divided the training
and testing groups into HR and LR groups for the validation
of the LASSO Cox regression results. The results demon-
strated that the difference in OS was significant between
the HR and LR groups (Figures 4(a) and 4(c)). The 10-year
AUC of the training group was 0.772, and the 10-year
AUC of the test group was 0.727 (Figures 4(b) and 4(d)).
After merging the data, the results also showed the same
trends for the HR and LR groups (p = 2:31E − 12, HR =

2:704), and the 10-year AUC was 0.74 (Figures 4(e) and
4(f)). Our results indicated that low-risk patients had a bet-
ter prognosis in the training (HR vs. LR patients; 5-year OS:
8.8% vs. 14.4%; p < 0:001) and testing (HR vs. LR patients; 5-
year OS: 5.6% vs. 12.8%; p < 0:001) cohorts.

External validation was performed with the GSE41613
dataset. The ROC analysis revealed a 5-year AUC of 0.607
(Figures 4(g) and 4(h)), and there was a significant differ-
ence in OS between the HR and LR groups (p = 3:33E − 01,
HR = 1:312). LR patients also had a better prognosis (HR
vs. LR patients; 5-year OS: 29.2% vs. 49.0%; p < 0:001). The
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3−years (AUC = 0.574)
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Figure 2: A prognostic signature based on genes associated with UPR. (a) Heatmap of the ssGSEA score of each item. (b) Heatmap of
ssGSEA score correlations between items. (c) OS of the HR and LR groups. (d) DFS of the HR and LR groups. (e) Time-dependent ROC
curves of the UPR-associated gene signature from 1 year to 10.5 years. (f) ROC curves for 3, 5, and 7 years.

Table 1: Cox regression results of hallmark items.

Term p value HR

HALLMARK_MYC_TARGETS_V1 0.011703 179594.1

HALLMARK_MTORC1_SIGNALING 4:29E − 05 1:59E + 10
HALLMARK_OXIDATIVE_PHOSPHORYLATION 0.030742 1266.05

HALLMARK_PROTEIN_SECRETION 0.018633 141007.4

HALLMARK_TGF_BETA_SIGNALING 0.067779 381.6219

HALLMARK_UNFOLDED_PROTEIN_RESPONSE 3:63E − 05 5:51E + 12
HALLMARK_MITOTIC_SPINDLE 0.736746 0.291637

HALLMARK_MYC_TARGETS_V2 0.05255 122.3036

HALLMARK_G2M_CHECKPOINT 0.495757 5.585005

HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY 0.061818 2061.022

9BioMed Research International



–6 –5 –4 –3

−0
.0

15
−0

.0
10

−0
.0

05
0.

00
0

Log Lambda

Co
effi

ci
en

ts
19 18 18 14

lambda = 0.0489

(a)

−6 −5 −4 −3

11
.0

11
.2

11
.4

11
.6

Log (λ)

Pa
rt

ia
l L

ik
el

ih
oo

d 
D

ev
ia

nc
e

21 20 19 19 19 18 18 19 18 18 18 17 15 14 12 7 0

(b)

Variable
ADGRG1
ALDOA
ERP44
GAK
GARS1
GHITM
MYH11
PFKM
PKD1
RDH11
TJP3
TPM3
TPT1
VDAC1

HR
1
1

1.01
0.992

1
1
1
1

0.993
1

0.985
1
1
1

95% CI
1 − 1
1 − 1

1 − 1.01
0.987 − 0.997

1 − 1.01
1 − 1
1 − 1

1 − 1.01
0.988 − 0.998

1 − 1.01
0.974 − 0.996

1 − 1
1 − 1
1 − 1

p_value
0.00253
0.00546
0.00144
0.00188

0.000105
0.00922
0.00404
0.00482
0.00362
0.00698
0.00954
0.00486
0.00612
0.00478

0.975 1 1.025

(c)

TPT1

ALDOA

ERP44

GARS1

RDH11

PFKM

TPM3

GHITM

VDAC1

GAK

TJP3

ADGRG1

MYH11

PKD1

Status
Risk score Risk score

14

2

Status
Alive
Dead

−4

−2

0

2

4

(d)

Figure 3: An analysis of the LASSO Cox and univariate Cox regression of the UPR gene signature. (a) LASSO regression results, λ = 0:0489.
(b) Cross-validation diagram of LASSO regression results. (c) The univariate Cox regression diagram of marker genes. (d) Heatmap of
marker genes, selected from the univariate Cox regression.
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Figure 4: LASSO regression verification. (a, b) OS and ROC curves of the training group. (c, d) OS and ROC curves of the testing group. (e,
f) OS and ROC curves of the total data of the training and testing groups. (g, h) OS and ROC curves of the external data (GSE41613).
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results from the internal and external verification cohorts
confirmed that UPR-associated genes affected HNSCC
patient survival.

3.3. Identification of Biological Characteristics Associated
with the UPR-Associated Gene Prognostic Signature. Further
exploration of the relationship between UPR-associated
genes and clinical features was performed by studying the
differences in risk scores by histopathological grade, sex,
age, T stage, N stage, and M stage. The difference in the risk
score in each group is shown in Figures 5(a)–5(f). According
to these results, sex, M stage, and pathological stage did not
affect the risk score. In Figures 5(g)–5(i), tumor purity,
lymph node status, and age were all factors that were related
to the risk score.

3.4. Construction and Validation of the Nomogram.
Although multiple prognostic factors were selected, the com-
plex interrelationships among variables and the contribution
of each factor to tumor formation and development remain
unclear. Therefore, a more comprehensive prognostic predic-
tion model is needed. In this study, we created a nomogram
model consisting of age, N stage, M stage, and the risk score
based on the point scale to predict survival in HNSCC patients
(Figure 6(a)). The nomogram model predictive accuracy was
evaluated using calibration curves and ROC curves
(Figures 6(b) and 6(c)). Based on our results, the nomogram
model is able to accurately predict OS for HNSCC patients.

3.5. Anticancer Drug Responses. To predict the response of a
cancer patient to a therapeutic agent, we performed research
on the difference in the IC50 score between the HR and LR

UPR-associated gene groups. The outcomes (Figure 7)
showed that anticancer drugs such as AKT inhibitor III,
CCT007093, vinblastine, EHT 1864, elesclomol, and
AS601245 were the most sensitive drugs in HR patients.
Sorafenib, mitomycin C, obatoclax mesylate, PHA665752,
and VX702 were the most sensitive anticancer drugs in the
LR patients. Based on these findings, guidance for clinical
treatment, which may vary depending on the type of UPR-
associated gene, is provided.

3.6. Immune Infiltration Analysis. To explore the immune
cells that may remarkably differ between different risk groups,
we performed an immune infiltration analysis. The differences
in M0 macrophages, follicular helper T cells, naive CD4 T cells,
CD8 T cells, and resting NK cells were significant between the
two test groups (Figure 8), which indicates that these immune
cells may be associated with UPR-associated gene.

3.7. Gene Set Enrichment Analysis (GSEA). We performed
GSEA to understand the potential biological processes of
UPR-associated gene, cellular components, molecular func-
tions, and pathways that may vary considerably between dif-
ferent risk groups. As shown in Figure 9(a), the positive
regulation of phosphatase activity, cellular extravasation,
and positive regulation of phosphatidylinositol 3-kinase
activity were significantly enriched in the HR group. The
establishment of protein localization to the ER, protein tar-
geting to the membrane, and protein localization to the ER
was highly enriched in the LR group. Cellular component
analysis showed that UPR-associated genes were related to
the phosphatidylinositol 3-kinase complex, phagocytic cup,
and plasma membrane raft in the HR group, and the

y = 1.1x + 2.06
corr = 0.122 p = 6.57e−03
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Figure 5: Clinical characteristics. Relationship between the risk score and clinical data in the (a) T stage, (b) N stage, (c) M stage, (d)
histological grade, (e) pathological stage, and (f) sex groups. Correlation between the risk score and (g) age, (h) lymph node, and (i)
tumor purity groups.
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preribosome large subunit precursor, U1 snRNP, and large
ribosomal subunit were enriched in the LR group
(Figure 9(b)). Figure 9(c) shows that SH2 domain binding,

cytokine binding, and RNA polymerase II transcription fac-
tor binding were highly enriched in the HR group, and disul-
fide oxidoreductase activity, which acts on NAPDH/quinone
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or similar compounds as acceptors, and structural constitu-
ents of ribosomes were enriched in the LR group. Platelet
activation, gap junctions, and the thyroid hormone signaling
pathway were related to UPR-associated genes in the high-
risk group. Oxidative phosphorylation, olfactory transduc-
tion, and ribosomes were enriched in the LR group in the
KEGG pathway analysis (Figure 9(d)). By analyzing enrich-
ment analysis results, we were able to understand the molec-
ular mechanisms underlying the UPR-associated genes
affecting HNSCC, clarifying their role in affecting prognosis.

4. Discussion

The UPR is an adaptive signaling network that is evoked by
physiological and pathological conditions. Researchers have

examined the relationship between UPR activation markers
and the prognosis of cancer [26, 27]. The results demon-
strated that activation of the UPR was related to shorter
OS, increased tumor aggressiveness, and increased metasta-
sis in breast cancer, colorectal carcinoma, glioblastoma,
and hepatocellular carcinoma [28–30]. Accumulated evi-
dence also suggests that the UPR signaling pathway and
ER stress play a functional role by regulating crucial tumor
biological processes in HNSCC, including progression and
therapy resistance [16]. However, few studies have revealed
whether UPR status predicts prognosis in HNSCC patients.
Additionally, HR patients with different UPR statuses
should also be assessed for their immune status to increase
the effectiveness of their immunotherapy. Therefore, our
study is aimed at constructing a model based on UPR-
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associated genes for predicting HNSCC prognosis and fur-
ther characterizing the IC50 scores and immune infiltration
levels between the two UPR risk groups. The most signifi-
cant conclusion from this study is that UPR status is an
important determinant of prognosis in HNSCC patients,
and the UPR-associated gene risk score combined with age,
N stage, and M stage may be used to develop a robust pre-
diction model for survival analysis. The IC50 analysis and
immune infiltration analysis may improve decision-making
at the individual patient level.

The univariate Cox analysis identified 14 key UPR-
associated genes that affected HNSCC prognosis (ADGRG1,
ALDOA, ERP44, GAK, GARS1, GHITM, MYH11, PFKM,
PKD1, RDH11, TJP3, TPM3, TPT1, and VDAC1). ER-
resident protein 44 (ERP44) is a redox sensor and regulates
the location of critical enzymes that operate in the ER.
ERP44 promotes progression in nasopharyngeal carcinoma
via its interaction with ATP citrate lyase and regulation of
epithelial-mesenchymal transition (EMT) [31]. Nasopha-
ryngeal cancer cells release exosomes expressing ERP44,
which may be delivered to adjacent cells to enhance chemo-
resistance under ER stress [32]. The above information sug-
gests that ERP44 is an important gene influencing tumor
progression and chemoresistance in HNSCC. Protein kinase
D1 (PKD1) is a member of the serine/threonine kinase fam-
ily and activates protective signals against ER stress. Several
investigations have shown that PKD1 plays a role in the reg-
ulation of various tumor-related pathways [33]. PKD1 is
closely related to the redifferentiation of keratinocytes and
the increase in cell proliferation, and it may enhance the

activity of the ERK/MAPK pathway [34]. Higher expression
of PKD1 correlated with poor differentiation in oral squa-
mous cell carcinoma [35]. PKD1 is frequently downregu-
lated at both the transcriptional and protein levels in
HNSCC cell lines [36]. However, there are no related reports
about the effects of PKD1 on the prognosis of HNSCC.
MYH11 is a novel gene for predicting OS in HNSCC and
may be a drug target based on bioinformatic analysis [37,
38], but experiments supporting these findings have not
been conducted. The effects of PFKM, ADGRG1, ALDOA,
GAK, RDH11, TJP3, TPM3, TPT1, and VDAC1 on the
prognosis of HNSCC and the immunological changes in
the HNSCC microenvironment have rarely been reported
and need further investigation. We also demonstrated that
the UPR-associated genes were differentially expressed in
different T stage, N stage, and histological grade groups.
We revealed that the UPR risk score was related to cancer
purity, lymph node status, and age. These results indicated
that UPR-associated genes affected the biological behavior
of HNSCC.

Several differences emerged between the prediction
results of the model and the external validation results of
the GSE41613 dataset. We speculate that this result may be
related to the classification of HNSCC. HNSCC is divided
into oral squamous cell carcinoma (OSCC), oropharyngeal
carcinoma, nasopharyngeal carcinoma, laryngeal carcinoma,
etc. The pathogenic factors of these cancers are diverse, and
survival outcomes differ in the different subsites of HNSCC
[39]. Therefore, HNSCC information in TCGA database is
relatively mixed. Deviations in the grouping of the training
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cohort and test cohort may lead to the above unsatisfactory
results. Therefore, we suggest that future analysis of the
prognosis at one subsite of HNSCC, such as OSCC, should
be based on the data of this subsite rather than on HNSCC
with mixed multiple sites. However, this model has the prin-
cipal benefit of bringing a complementary perspective to
individual tumors and establishing a scoring framework for
patients. Therefore, our nomogram may be a favorable tool
for clinicians in the future. However, whether the UPR-
associated gene model predicts the recurrence of HNSCC
is not known. This relationship is our future focus, and we
will investigate the role of UPR-associated genes in the
recurrence of HNSCC.

It is becoming increasingly recognized that heterogeneity
is significant in tumor progression and clinical decisions.
The present evidence supports that chemotherapy resistance
in cancers is linked to the UPR and ER stress [32]. One
problem with the existing anticancer drugs is that a particu-
lar drug shows different sensitivities in different individuals.
Targeting UPR branches is a promising way to enhance the
efficacy of chemotherapy for cancers [40]. Considering the

above problem, we performed a UPR-related IC50 analysis
to explore sensitivities and help HNSCC patients obtain per-
sonalized medication regimens. AKT inhibitor III,
CCT007093, vinblastine, EHT 1864, elesclomol, AS601245,
etc. may be the most sensitive anticancer drugs in HR
patients whose outcome survival is much poorer than that
of LR patients. However, more research is needed to verify
whether these drugs can achieve the predicted sensitivity.
A recent study [41] explored the best metric for predicting
drug sensitivity, and they found that the area above the
dose-response curve was better than the IC50. To further
verify the anticancer sensitivity of these drugs in different
UPR risk groups, in vivo and in vitro experiments should
be conducted.

Previous studies have shown that the UPR evades the
immune response by regulating the tumor microenviron-
ment. The ER stress state of tumor cells is transmitted to
macrophages and dendritic cells (DC) in the microenviron-
ment. This communication leads to the upregulation of the
expression of some proinflammatory cytokines and chemo-
kines, which inhibits the maturation of DCs. It also inhibits
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the activation of CD8+ T cells and secretes arginine by
reducing the process of antigen presentation, which inhibits
T cell activation and leads to tumor immune escape [18].
Therefore, we further investigated the role of the UPR in
the tumor microenvironment by evaluating immune cell
infiltration. The results revealed significant differences in
M0 macrophages, follicular helper T cells, naive CD4 T cells,
CD8 T cells, and resting NK cells between the HR and LR
groups. This finding provides important insights into the
tumor immune microenvironment affecting the UPR.

Different risk groups showed enrichment in different
pathways in the GSEA. The UPR genes included in the sig-
nature were primarily involved in platelet activation, gap
junctions, and the thyroid hormone signaling pathway in
the HR group. The platelets seem to play a critical role in
malignant tumor metastasis. Cancer metastasis is promoted
by the interaction between platelets and circulating tumor
cells (CTCs). CTCs activate platelets, and activated platelets
accumulate and protect CTCs from NK cells and shear
stress. Finally, CTC hypoxia tolerance is promoted by plate-
lets, along with angiogenesis, EMT, extravasation, and ulti-
mately metastasis [42]. Our results suggested an
explanation for why HR group patients have a poorer out-
come than LR patients, and the status of platelet activation
may be a vital factor.

In summary, we identified 14 genes associated with the
UPR in HNSCC patients that affected their prognosis.
Based on these genes, we investigated the prognostic sig-
nificance of the UPR risk score for HNSCC patients and
established a nomogram prediction model combining this
risk score with age, N stage, and M stage. The infiltration
of immune cells in the microenvironment was further ana-
lyzed, which provided some information for immunother-
apy in different risk groups. This study also described
therapeutic regimens in different risk groups of HNSCC,
and it may be used as a reference for further studies on
clinical medication. Notably, the prognosis of HNSCC
was analyzed from the perspective of the UPR, and the
changes in the immune microenvironment and possible
effective drug regimens were described, which provided
certain help for the treatment of HNSCC. However,
because our study was based on bioinformatic analysis,
there are some limitations, and our results must be con-
firmed in further clinical studies. This limitation means
that the study findings must be interpreted cautiously.
The function and mechanism of these UPR-associated
genes, either individually or in combination, should be
investigated to support their clinical application.

5. Conclusions

We developed a potent model based on the UPR-
associated gene signature, i.e., the UPR risk score com-
bined with age, N stage, and M stage, and this model
may be used to predict HNSCC survival prognosis. Our
study enhances the understanding of genes associated with
UPR pathways in HNSCC and can improve decision-
making at the individual patient level.
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